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Abstract. This paper proposes the use of DNNs as a means to reduce the number of domains
that need to be simulated in multi-row CFD runs in the context of a shape optimization based
on stochastic, population-based algorithms. This is demonstrated in the shape optimization
of a hydraulic turbine that consists of stay vanes, guide vanes, runner blades and the draft
tube. Only the runner blades, the shape of which are parameterized by a volumetric NURBS
lattice, are allowed to vary during the optimization. For the CFD analysis, the NTUA’s GPU-
accelerated multi-row flow solver PUMA, which solves the RANS equations for incompressible
flows, coupled with the Spalart-Allmaras turbulence model, is used. The CFD simulation of
such a multi-row configuration makes use of the mixing plane technique for the interaction
between adjacent rotating and stationary domains. Herein, a DNN-based surrogate to the
mixing plane technique is used to avoid the CFD solution into the domains of the stay and
guide vanes and the draft tube. The DNN is trained based on the coordinates of the (free) control
points of the NURBS lattice and predicts the averaged quantities exchanged at the interfaces
(mixing surfaces) between the guide vanes and the runner as well as the runner and the draft
tube. The optimization is carried out by means of metamodel-assisted evolutionary algorithm
(MAEA) enhanced by the Principal Components Analysis (the EASY platform developed by the
group of authors). This MAEA has a dual role as it is used both for the definition of the optimal
DNN architecture and the shape optimization of the runner.
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1 INTRODUCTION

During the last years, DNNs have been widely used in assisting CFD analysis and optimiza-
tion problems due to their ability to detect input data properties and patterns and make low-cost
predictions. Indicatively, in [1], the group of authors of this paper proposed a DNN-based
surrogate for turbulence closure of the RANS equations. The DNN was used to replace the
numerical solution of the turbulence and transition models by providing the turbulent viscos-
ity field in each pseudo-time iteration of the RANS solver. The less demanding DNN-assisted
RANS solver was demonstrated in the shape optimization of a transonic turbine blade and a car
model. A physics-informed convolutional neural network was used for flow predictions in [2];
emphasis was laid on the preservation of the physical laws. In [3], a deep Long Short-Term
Memory network was used to predict the turbine flow characteristics based on real machine
operation data from a hydropower plant.

In this work, DNNs are used to reduce the number of simulation domains in the case of multi-
row CFD simulations. In specific, a DNN-based surrogate replaces the Rotor-Stator Interaction
(RSI) technique, i.e. the need for simultaneously simulating two successive rows and the iter-
ative exchange of data along the interfaces through the mixing plane technique. A number of
multi-row CFD runs is used to collect data and train the DNNs on them, so that, during the op-
timization of the runner, only the latter undergoes a CFD analysis, whereas the other domains
manifest their presence through the trained DNNs. To showcase the proposed methodology, a
computationally demanding hydraulic turbine application is selected.

Nowadays, hydropower is considered the most important source of renewable energy. In
order to be competitive and meet the tight delivery schedule of new products, suppliers rely on
CFD tools and optimization methods for the design of hydraulic turbines and their components.
At the same time, the increased demand for flexibility in the hydropower plants pushes towards
an extended operating range of hydraulic turbines. When operating at off-design loads, the flow
through the turbine may become unstable and presents instabilities (such as pressure pulsations,
structural vibrations etc.) which compromise the smooth and safe operation of the machine, [4].

Herein, the CFD-based shape optimization of a hydraulic turbine (consisting of stay, guide
vanes, runner blades and the draft tube) aims at reducing the amplitude of pressure pulsations
between the runner and the guide vanes while also ensuring that no cavitation occurs in the run-
ner. An evolutionary algorithm assisted by surrogate evaluation models (Metamodel-Assisted
Evolutionary Algorithm; MAEA) and the Principal Component Analysis (PCA), [5], is used
to optimize the runner blade shape. The evaluation of each candidate solution is carried out
using the in-house GPU-accelerated solver PUMA, [6], which solves the RANS equations for
incompressible flows, coupled with the Spalart-Allmaras turbulence model. The mixing plane
technique is used to model guide vanes-runner and runner-draft tube interactions when running
the CFD code through the entire turbine (this code will be referred to as the CFDF). The idea
this paper is based upon is to train and use DNN-based surrogates to the mixing plane technique,
before and after the only domain to be solved by the CFD tool (that of the runner), to overcome
the simultaneous CFD solution into the domains of stay and guide vanes as well as the draft
tube; the new model will be abbreviated to CFDR as it simulates the flow by the CFD code only
in the runner (=R) domain; the two DNNs are indispensable parts of CFDR). “Optimal” hyper-
parameters of the DNN must be found and this is also based on the above-mentioned MAEA,
which thus undertakes two different roles in this work.
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2 BACKGROUND METHODS AND TOOLS

2.1 Optimization tool (MAEA)

The shape optimization of the runner geometry as well as the optimization of the DNN hy-
perparameters considered in this work are carried out by means of the MAEA, enhanced by
the PCA. This is implemented in the Evolutionary Algorithms SYstem (EASY) optimization
platform, [7], developed by the PCOpt/NTUA. During each generation, the (µ, λ) EA, main-
tains and updates three populations, namely that of λ offspring, that of µ parents and the set
of the (at most e) best so-far solutions. EASY uses on-line trained surrogate evaluation models
or metamodels that replicate the problem specific model (herein, the CFD tool). The first few
generations run as in a standard EA (used to collect the first TMM evaluated individuals in the
dynamically expanded database or DBEA). Within each subsequent generation, a single person-
alized metamodel is trained for each offspring, on its neighboring already evaluated (during the
evolution) individuals and used to pre-evaluate it at minimal cost. After pre-evaluating all the
population members on the metamodels, only a few promising (λe) individuals in each gener-
ation are re–evaluated on the CFD tool. Radial Basis Functions (RBF) networks are used as
metamodels.

Engineering optimization problems with many design variables, such as the one tackled
herein, usually suffer from the “curse of dimensionality”. To alleviate this problem, the Kernel
PCA is additionally employed in each generation. The PCA of the offspring population is used
to control the evolution operators and/or prune the number of the metamodels’ input units. With
regard to the former, the variances resulted from the PCA are used to transform the parents into
a new feature space. Crossover and mutation take place in the feature space and the new off-
spring are transformed back into the design space. Regarding the use of the PCA to improve
the prediction accuracy of metamodels, the training patterns, used for the personalized meta-
model of each population member are transformed to the feature space whereas some of the
transformed inputs, those along directions with the smaller variances, are truncated. By doing
so, the metamodels yield improved predictions and the overall algorithm converges faster.

2.2 CFD analysis tool

The CFD analysis tool used in this work is the in-house GPU-accelerated s/w PUMA, [6, 8],
which solves the RANS equations for incompressible fluids using the artificial compressibility
method. The steady residuals of the flow equations read

RUn =
∂f inv

nk

∂xk

− ∂f vis
nk

∂xk

+ Sn = 0 (1)

where Un = [p, v1, v2, v3]
T is the flow variables array with p the kinematic pressure and

vk (k=1, 2, 3) the absolute Cartesian velocity components. The inviscid (f inv
k ), viscous (f vis

k )
fluxes and the source terms (S) are written as

f inv
k =


β2wk

wkv1+pδ1k
wkv2+pδ2k
wkv3+pδ3k

 , f vis
k =


0
τ1k
τ2k
τ3k

 , S=


0

ε1ℓkωℓvk
ε2ℓkωℓvk
ε3ℓkωℓvk

 (2)

where β is a parameter corresponding to a (constant) artificial speed of sound, wk the relative
velocity components, ω the rotational velocity vector and δkm, εiℓk the Kronecker and permu-
tation symbols. The stress tensor is τkm =(ν + νt)

(
∂vk
∂xm

+ ∂vm
∂xk

)
where ν and νt stand for the
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kinematic and turbulent kinematic viscosities, respectively. Eqs. 1 are loosely coupled with the
Spalart-Allmaras turbulence model equation, [9].

The interaction between adjacent rotating and stationary domains (RSI) is modeled using
the mixing plane technique. According to this, in the CFDF tool, the spanwise distribution of
circumferentially averaged (mixed-out) flow variables V̂ = [p̂, v̂r, v̂θ, v̂a]

T is communicated
between the adjacent domains; vr, vθ and va stand for the radial, peripheral and axial compo-
nents of the absolute velocity vector and the hat (ˆ) symbol indicates circumferentially averaged
quantities. Then, using V̂ as well as the flow variables of each domain, the numerical flux to
be imposed at each RSI mesh node is computed. Upon convergence of the flow equations, the
numerical fluxes crossing the interface are conserved.

PUMA implements a vertex–centered finite volume approach on hybrid meshes consisting
of tetrahedra, pyramids, prisms and/or hexahedra. A multi-stage Runge–Kutta scheme with
implicit residual smoothing is used. The inviscid fluxes are discretized using a second-order
Roe’s upwind scheme. The software runs on GPUs with minimal memory requirements and
increased parallel efficiency. This is attributed to the Mixed Precision Arithmetic technique
according to which, the quantities of the left-hand-side are computed in double, though stored
in single precision.

2.3 Shape parameterization and mesh deformation tool

The runner blade shape is controlled using an in-house free-form deformation technique
based on volumetric NURBS, [10]. The same tool also controls the volume mesh deformation,
avoiding the use of a mesh displacement tool. This tool was made for turbomachinery applica-
tions, so it takes periodicity into account and, when updating the blade shape, ensures hub and
shroud axisymmetry. The latter is achieved through an intermediate coordinate system trans-
formation, [10]. The control lattice is primarily defined in the new coordinate system and, then,
transformed into the Cartesian one.

The 11×3×5 NURBS control lattice used to parameterize the runner is shown in Fig. 1. The
coordinates of some of these control points are selected as the design variables. In specific, 9
out of the 11 series of control points in the streamwise direction are allowed to vary in both the
streamwise and pitchwise directions giving rise to 180 design variables in total.

Figure 1: The runner blade enclosed into the NURBS control lattice. Blue points are allowed to vary during the
optimization while red ones remain constant.
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3 DNN-BASED SURROGATE FOR THE MIXING PLANE TECHNIQUE

The hydraulic turbine considered in this work consists of 21 stay, 21 guide vanes, 9 runner
blades and a draft tube, Fig. 2. The optimization aims at minimizing the difference of the max.
and min. pressure (F = [Pmax−Pmin]Probe) at a point (probe) located between the guide vanes
and the runner (at a specified radial and axial position). The temporal variation of this point can
easily be seen as a spatial distribution along the corresponding circumference. Constraints that
(a) retains the torque produced by the turbine and (b) overcomes cavitation on the runner blade
are imposed.

Figure 2: Perspective view of the baseline turbine geometry with the stay vanes (orange), guide vanes (green),
runner blades (blue) and (just the very first part of) the draft tube (ice blue).

Given that all the aforementioned quantities of interest (objective and constraints) result from
flow data computed in the runner domain, the idea is to simulate the flow only in the runner
rather than in the entire turbine. Using the terminology introduced in section 1, the plan is to
use the CFDR (instead of the CFDF), tool within the MAEA-based search. This will reduce the
computational cost of each evaluation and, thus, the overall optimization turnaround time.

To do so, boundary conditions that replicate the presence of the stators (stay and guide vanes)
and the draft tube must be imposed at the inlet and outlet of the runner domain. Since the RSI is
modelled via the mixing plane technique (schematically illustrated in Fig. 3), two DNN–based
surrogates of the RSI are used to predict the distributions of the flow quantities communicated
between the adjacent domains at these interfaces. In specific, the two DNNs undertake the
prediction of the axial distribution of the runner inlet flow variables (DNN1) and the radial one
of the runner exit flow variables (DNN2), Fig. 4.

CFDF

Stay & Guide
Vanes

Runner Draft Tube
RSI1 RSI2

Runner
DNN1 DNN2

CFDR

Figure 3: Schematic representation of the exchange of information (numerical fluxes) between adjacent rotating
and stationary domains at the two interfaces (RSI) in the case of CFDF (top), and CFDR supported by the DNNs
(bottom).
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Figure 4: The radial inflow and axial outflow boundaries of the runner domain. The two interfaces of the runner
with the guide vanes (top) and the draft tube (bottom) along with the zones used for averaging the flow quantities.

3.1 Configuring and training the two DNNs

The first step to be taken is to sample the runner’s blade design space and generate the
database (DBDNN) that the DNN will be trained on. DBDNN should not be confused with the
DBEA supporting the MAEA. For each value set of design variables, corresponding to a dif-
ferent runner geometry, the full turbine (with all the aforementioned components) is simulated
using the the PUMA software. The large number of design variables (180) makes the sampling
procedure challenging. A small number of samples which though ensures that the so-generated
DBDNN is suitable for the DNN training would be ideal. The Latin hypercube sampling tech-
nique is used and three DBDNN sizes consisting of 50, 75 and 100 samples are generated. These
will be denoted as DB50

DNN, DB75
DNN and DB100

DNN, respectively. Later on, the corresponding trained
DNNs will be assessed in terms of cost of the optimization run. Assuming that an evaluation on
the CFDF corresponds to one (1) cost unit, forming the DBDNN costs as many cost units as the
DBDNN size.

The DNN training uses the coordinates of the NURBS’ lattice control points that are al-
lowed to vary as inputs and predicts the distributions of the flow quantities (velocity vector and
pressure) at the RSI, to be used as the inlet and outlet conditions for the runner domain.

In this work, Fully Connected Neural Networks (FCNN) are considered. The hyperparam-
eters of each network result from a (µ, λ) = (10, 30) MAEA-based optimization aiming at
minimizing the DNN prediction error, [1]. The unknowns are the number of layers, the number
of neurons per layer (in powers of 2) and the activation function in each layer. For the latter,
the algorithm has to select among the Rectified Linear Unit (ReLU), Gaussian Error Linear
Units (GELU), hyperbolic tangent (tanh) and sigmoid functions. The DNN setup and training
is carried out in the TensorFlow framework using Python. The Adam optimizer, [11], is used.
The use of an optimization algorithm to define the DNN hyperparameters enhances the DNN
reliability for the upcoming shape optimization. In our case, the overall cost of the optimization
of the hyperparameters of both DNNs, including the training itself, sums up to no more than 2
cost units.

The optimal DNNs configurations are summarized in Table 1. In all cases, the optimization
selected the GELU activation function for all the hidden layers and the sigmoid one for the
output layer. Though the number of layers is not affected by the number of training patterns,
this is not the case for the number of neurons per layer. Nevertheless, the total number of
the trainable parameters of each DNN are comparable. For the DNN1 these are about 20M ,
while for the DNN2 about ∼ 5M (see last column of Table 1). This means that the DNN
hyperparameters could have been optimized only once (for any DBDNN size), followed by an
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independent training for each DBDNN size, since the number of trainable parameters is, more or
less, the same for all optimal configurations. The use of three different DNN architectures was
decided to ensure a fair comparison between the performances of the DNNs during the shape
optimization of the hydraulic turbine in Sec. 4.

Position DBDNN Layers Neurons/Layer Parameters

Inlet (DNN1)
50 7 4096, 4096, 1024, 64, 128, 256, 1024 22M
75 6 2048, 4096, 1024, 4096, 256, 512 19M
100 7 128, 64, 4096, 4096, 256, 1024, 64 22M

Outlet (DNN2)
50 4 2048, 1024, 256, 1024 3M
75 3 1024, 1024, 1024 5M
100 4 2048, 2048, 32, 256 4.5M

Table 1: Optimal configurations for DNN1 (inlet) and DNN2 (outlet).

3.2 Assessment of the trained DNNs

The proposed DNN-based surrogates to the mixing plane conditions are initially applied and
assessed in the baseline geometry. The DNNs trained on the DB50

DNN are selected and used to
predict the velocities and the pressure distributions at the RSI zones of the turbine. These are
compared with those resulted from a CFDF simulation, Fig. 5. The agreement is absolutely
satisfactory; small discrepancies exist in some of the zones of the axial velocity profile at which
values are overestimated by the DNN. The flow simulation in the runner domain using either
CFDF or the DNN (predicted) distributions yield similar objective function values; a percentage
error of about 1.1%, with the DNN overestimating the objective function value is observed.
Overall, the DNNs are considered reliable for use together with the CFDR, in the shape opti-
mization.
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Figure 5: Comparison of the radial, peripheral, axial velocity and pressure (from left to right) between the CFDF

(black) and the DNN prediction (red).

4 SHAPE OPTIMIZATION STUDIES

This section summarizes the shape optimization studies using the proposed DNN-based sur-
rogates for the mixing plane. For the sake of comparison, an additional run simulating the flow
in the entire turbine domain (using CFDF) is also presented. The target is to suppress pressure
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pulsations between the guide vanes and the runner by additionally retaining the torque pro-
duced by the turbine and ensuring that no cavitation occurs on the runner blade. The objective
is quantified by the amplitude of the pressure field defined at a constant radius between the guide
vane-runner interface and the runner leading edge. To avoid cavitation, the optimization should
ensure that the min. pressure over the optimal runner blade exceeds that of the non-cavitated
runner of the baseline geometry; this is a relative, rather than an absolute cavitation criterion.

In all studies, a (µ, λ) = (12, 20) MAEA is used. Its problem-agnostic metamodels (RBF
networks) are activated after at least TMM = 50 evaluations on the problem specific model
(either CFDF or CFDR), provided that at least 30 of them meet the constraints; these are all
archived into the DBEA. The previous criteria ensure that there will be enough data to train
dependable metamodels. In generations that are assisted by metamodels, the best (according to
objective function predictions on a properly trained metamodel) λe∈ [2, 4] population members
are re-evaluated on the PSM; the selection of the λe value is related to the degree constraints
are violated and the accuracy of the metamodels’ prediction. The PCA is activated after the 3rd

generation and the metamodels are trained using the 45 first principal components, pinpointed
by the PCA of the current offspring population.

The computational cost of an evaluation based on CFDF (the entire turbine) is ∼15 min. on
a single A100 NVIDIA GPU (one cost unit). The CFDR simulation that solves only the runner
domain using the DNN-based boundary conditions takes ∼9 min. on the same GPU, i.e. the two
tools have a cost ratio of 0.6. The computational budget for any optimization run is set to 150
cost units; this includes the cost for creating the DBDNN, configuring and training the DNNs.

The convergence histories of all optimization runs as well as a close up view to the opti-
mal (re-evaluated on CFDF) solutions are presented in Fig. 6. The optimization on the CFDF

decreased the objective function by ∼ 61%. Regarding the runs based on CFDR which makes
use of DB50

DNN, DB75
DNN and DB100

DNN a reduction of ∼ 68%, ∼ 65% and ∼ 61% is obtained (after
re-evaluations on the CFDF model), respectively.
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Figure 6: Convergence histories of the MAEA-based optimizations (left); CFDF (black), CFDR with DB50
DNN (red),

DB75
DNN (blue) and DB100

DNN (purple). Cost units from 1 to the beginning of the colored lines correspond to the
evaluation of training patterns, the training of DNNs as well as the cost of the very first MAEA generation. Close-
up view (right) of the end of the optimization in which the optimized solutions are re-evaluated on the CFDF (filled
squares).

The (non-dimensionalized) objective and constraint values of the optimized solutions are
summarized in Table 2. It can be seen that the optimizations relying on CFDR with DB50

DNN and
DB75

DNN outperform the CFDF-based one. With the decided computational budget, the run with
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DB100
DNN does not have enough cost units left for the optimization, given that 102 cost units have

already been spent for populating the DBDNN and training the DNNs. Regarding the cavitation
constraint (second row of Table 2), the minimum pressure on the runner blades resulted from all
optimization runs is higher compared to that of the baseline geometry, i.e. the cavitation risk is
less. As far as the torque constraint is concerned CFDR with DB75

DNN and DB100
DNN yield more or

less the same torque with the baseline geometry, while CFDR with DB50
DNN yields more torque.

In all cases studied with the CFDR, the objective function value is computed with adequate
accuracy; the percentage errors can be found after re-evaluations on the CFDF are 1.7%, 0.3%
and 1.1% for the 50, 75 and 100 training patterns, respectively. The very small error values
confirm that the use of an optimization algorithm to select the DNNs’ hyperparameters (as
described in Sec. 3) is absolutely useful.

Optimization Optimizations on CFDR

on CFDF DB50
DNN DB75

DNN DB100
DNN

Objective 0.388 0.323 0.353 0.394
Min. pressure 1.01 1.24 1.14 1.14
Torque 1.039 1.012 0.994 1.007

Table 2: Comparison of the optimized (within the pre-decided computational budget) solutions resulted from the
optimizations on CFDF and CFDR (the tabulated values of the latter have been computed by means of CFDFre-
evaluations). All quantities are non-dimensionalized by the corresponding values of the baseline geometry. The
objective function (to be minimized) is defined in Sec. 3. The “min. pressure” is a measure for possible cavitation;
this should exceed 1. Figures in bold highlight the best values obtained from the CFDR-based runs.

A comparison of the circumferential pressure distribution, used for computing the objec-
tive function, between the baseline and the optimized from the CFDR model with DB50

DNN, is
presented in Fig. 7. A comparison of the pressure on a constant radius surface used for the
definition of the objective function between the baseline and optimized geometries is shown in
Fig. 8. Apart from the amplitude itself, the pressure values themselves are also decreased in the
optimized geometry.
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Figure 7: Comparison of the circumferential pressure distribution on the baseline (blue) and the optimized by
CFDR with DB50

DNN (red) geometries. Pressure values are non-dimensionalized with the mean pressure value of the
baseline geometry.
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Figure 8: Pressure field on the surface at a constant radius used for the definition of the objective function for the
baseline (top) and the optimized (bottom) geometries.

5 CONCLUSIONS

The shape optimization of a hydraulic turbine assisted by a DNN-based surrogate to the mix-
ing plane technique was presented. The aim was to reduce the number of inter-communicating
domains for which a CFD solution is necessary and, as a consequence, the computational cost
of multi-row CFD simulations. The gain in computational cost was showcased in the shape op-
timization of the runner blades of a hydraulic turbine where the DNNs were used to “simulate”
the presence of the stationary domains namely the stay vanes, the guide vanes and the draft tube.
The DNNs were trained on the coordinates of the control points of the NURBS lattice param-
eterizing the runner blade and deforming the surrounding computational mesh. The averaged
quantities exchanged at the interfaces between stationary and rotating domains were predicted
by the DNNs and used for simulating the flow only in the runner domain. The optimization
studies revealed that the DNN-based surrogate is a reliable tool and when used in the context
of an optimization algorithm may lead to better optimized solution (up to 20%), for a given
computational cost.
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